Designing for performance with OpenVMS

OpenVMS Bootcamp 2017
Session 234

Colin Butcher CEng FBCS CITP

Technical director, XDelta Limited
www.xdelta.co.uk

_cponect X

Copyright © XDelta Limited, 2017 Page 1 of 34 Xde]ta

XDelta: Who we are Bl 2B sortware

VSI Professional Services Alliance member
Independent consulting engineers since 1996:

UK based with international reach

e Delivering OpenVMS based systems for 30+ years
Technical leadership for business-critical systems

« Design, planning and implementation
* Mentoring and skills transfer

e Systems engineering background
Gartner (2009):

 Identified XDelta as one of few companies world-wide capable of
OpenVMS platform migration projects

XD-

Copyright © XDelta Limited, 2017 Page 2 of 34 X de] t a

XDelta - a trusted advisor to advance your critical

OpenVMS application infrastructure

Standards, integration, containers,
composable infrastructure....

OpenVMS

Your
Open'VMS
investment

e
N,
“ &
*,
%
,
\,
%
N
,
%,
%,

xdelta

Avwailability - Data integrity - Scalability - Performance - Security

OpenVMS
Integrity i2,
i4, i net

y
4 OpenVMS
Openvms || /IPha
VAX

VS|
OpenVMS
Integrity +
x86

0.

v
v
v
v

Independent

=Mo hidden product agenda

=Whole-infrastructure experts in

Mission-Critical Esridiasmeridi

=Truly understand your OpenVMS

Ana |y5 € investment

=Help you evolve and get better business

Recommend outcomes from OpenVIMS

=As appropriate, work with HPE & Partners

Partner to evolve for the future

—/
Hewlett Packard
Enterprise
Your Indep HP Busi ay y

Copyright © XDelta Limited, 2017

Page 3 of 34

XD-

xdelta

Agenda

* Principles of performance

* Designing and implementing scalable software

« Making use of multiple CPUs (cores and hyperthreads)
« Making use of memory

« Making use of the storage 10 subsystem

« Making use of the network 10 subsystem

 The importance of testing

II,,-S:% e L‘?

| | | ot | s L

(] _3_ v i | . |- A
Your Independent HP Busi Technology C: ity

Copyright © XDelta Limited, 2017 Page 4 of 34 X de] t a

Abstraction layers

“All problems in computing can be solved by introducing
another layer of abstraction.”

“Most problems in computing are caused by too many layers
of complexity.”

We need to strike a balance that is appropriate for the kinds of
systems we’re building.

m NN Y™ ™™ T

I it | | et | s B

— oVl AR vl Sl —
Your Independent HP Busi Technology C ity

Copyright © XDelta Limited, 2017 Page 5 of 34 X de] t a

Using abstraction layers

What looks like your dedicated resource is just a slice of a

much bigger thing over which you may have little control:
 What looks like a network isn’t the whole network

 What looks like a disc isn’t a disc

 What looks like memory isn’t all of memory

 What looks like CPUs aren’t all the CPUs

The operating system allocates and manages machine
resources

It's even more complicated in a virtualised environment

rl,;_* Y) ..:;4*_:1:-.: ‘.:5-: ’_;v_?:h_.:i_:
| | e =
il —
HP Busi Technology C ity

Copyright © XDelta Limited, 2017 Page 6 of 34 X de] t a

The “Hall of mirrors”

You can’t see everything that’s going on

The view is often distorted

Hiding things makes it easier to deal with the bits you're
Interested in

Hiding things makes it much harder to understand what’s
happening, especially with performance related problems

I’";\: . oy [ge— m——
| | e .
AL A A —
HP Busi Technology C ity

Copyright © XDelta Limited, 2017 Page 7 of 34 X de] t a

Performance characteristics

* Bandwidth — determines throughput
e It’s not just “speed”, it’s “units of stuff per second”

e Latency — determines response time
« Determines how much data is in transit
e “data In transit” is at risk if there is a failure

o “diff latency” (variation of latency with respect to time) or

“litter” - determines predictability of response
» Important for establishing timeout values
« Latency fluctuations will cause failures under peak load

XD-

xdelta

Capacity and scalability

e Contention and saturation — running out of capacity
 What else are we sharing our capacity with ?
e Queuing theory

* Increasing the capacity of the overall system:
o “Scale up” or “vertical scaling” — adding resources to a
machine or buying a bigger machine (CPU count, memory,
I/O adapters, etc.)
e “Scale out” or “horizontal scaling” - adding more machines

m rl,;_*_p(: .ﬁ:::?'." ..:;4*_:1:-.: ‘.:5-: = Li-

i]| | o | s B

— oVl AR vl Sl —
Your Independent HP Busi Technolagy C ity

Copyright © XDelta Limited, 2017 Page 9 of 34 X de] t a

Current technology trends - parallelism

 Move from low core count, high clock rate processors to
high core count, low clock rate processors

« Implicit assumption is that parallelism can be achieved
o Algorithm design is key
 Don't leave it all to the compilers

o Serialisation, synchronisation and intercommunication

Copyright © XDelta Limited, 2017 Page 10 of 34

XD-

xdelta

Parallelism and scalability

* Understand how the applications could break down into

parallel streams of execution:
« Some will be capable of being split into many small elements with
little interaction between the parallel streams of execution
« Some will require very high interconnectivity between the parallel
streams of execution
e Some will require high-throughput single-stream processing

* Understand scalability — do as much as possible once only,
do little as possible every time

OD e Y T o] o o

i 1 | e | N

—_— ¥l AL RS St & —
Your Independent HP Busi Technology C ity

Copyright © XDelta Limited, 2017 Page 11 of 34 X de] t a

Writing scalable code

([]

([]

([]
Your Independ

Check for code making assumptions that the system is a

uniprocessor machine:
* Flags controlling access to an entire global section
« Loops polling for flag status changes (spinlocks)
« Data structures not protected from operations that may happen in
parallel instead of sequentially

Use the lock manager to serialise and synchronise access
to data structures

Minimise wait states by having appropriate granularity of
access to data structures

Take null locks out, then simply convert them as needed

f;-'-:-?._:‘ = _‘,'{_-* = L.i~

[| [l |

| | L 1)

L —
HP Busi Technology C ity

Copyright © XDelta Limited, 2017 Page 12 of 34 Xde]ta

Code paths and data flows

« How does your code scale up ?
o Separate out static data from dynamic data
 Minimise frequently executed code paths

« How to reduce impact on system and surrounding network
and storage infrastructure ?

ml,,;_*_:t_: = =y — r——
Your Independent HP Busi Technology C ity

Copyright © XDelta Limited, 2017 Page 13 of 34 X de] t a

IO performance v CPU performance

* Physical I/O operations typically takes a few milliseconds to
complete

 We can execute a lot of CPU clock cycles in a few
milliseconds (1 GHz = 1 nanosecond, thus 1 million clock
cycles per millisecond)!

ml,,;_;:t_: = =y — r——
—_— Jo | B | B |) SN N —
Your Independent HP Busi Technology C ity

Copyright © XDelta Limited, 2017 Page 14 of 34 X de] t a

Analysis tools and instrumentation

Code analysis tools can help with finding interactions and
heavily executed code paths

Build instrumentation into your software, then you don’t
change its behaviour by adding temporary code

Pay attention to state transitions and event timing

Synchronisation and wait states are expensive

N ™) S
I | N | w— S R S —
HP Business Teshnology i

Copyright © XDelta Limited, 2017 Page 15 of 34 X de] t a

Compilers

Generate the Instruction and Data streams for processing
by the system

Different types of instructions and data are split out into
separate sections (shared data, read-only data, local read-
write data etc.) for use by the linker

Generate code for a specific machine architecture
Optimisation re-orders the code to take advantage of
hardware parallelism and processing efficiencies
Generate debug information

Linker lays out the image address space and provides
hooks for the image activator

il | | i |
— - 1_,_.14_.:‘.-___,.;-_.‘-:,— -—;-gi_%_-;::-:w_ L .
Your Independent HP Busi Technology C ity

Copyright © XDelta Limited, 2017 Page 16 of 34 Xde]ta

Limits to software performance

« Ability to make use of hardware parallelism

e Granularity of data structures

e Synchronisation techniques

o Serialisation technigues

o Scalability techniques

o Compilers

« Application design

* Designing and writing very good code requires very good
programmers

XD-

xdelta

Software considerations on Integrity

« Compilers are the key to performance

e Use the documented mechanisms provided by the
operating system - read the release notes and new
features, then use the current mechanisms

e Exception handling (LIB$SIGNAL etc.)

o Data alignment (unexpected alignment faults)

* Floating Point format (IEEE by default)

e Implicit assumptions

e Debugging, ELF & DWARF formats

 Integrity calling standard and register usage

m NN Y™ ™™ T

i]| | o | s B

— —t il —
Your Independent HP Busi Technolagy C ity

Copyright © XDelta Limited, 2017 Page 18 of 34 X de] t a

Java Virtual Machines

Java is not a compiled language running native instructions
—Java run-time environment (Java Virtual Machine)
The Java run-time environment uses significant amounts of

memory and performs “garbage collection” intermittently to
remove objects no longer in use

Tuning a system to run Java well can be “interesting”

I’";\: . oy [ge— m——
| | e .
AL A A —
HP Busi Technology C ity

Copyright © XDelta Limited, 2017 Page 19 of 34 X de] t a

Making use of CPU

* Hyperthreading — very workload dependent

« Fastpath IO devices and distributed interrupt handling

* Introduce parallelism into your code flow and batch jobs
where possible

* Dedicated CPU for lock manager (local locking)

e Compression and encryption, eg: SCS compression,
BACKUP compression

e QUANTUM, workload dependent — many SYSGEN
parameter defaults changed in V8.2

 Power management

II,,-S:% e L‘?
- i | . |- A
Your Independent HP Busi Technology C: ity

Copyright © XDelta Limited, 2017 Page 20 of 34 Xde]ta

Making use of memory

« NUMA - “mostly UMA” is a good starting point

e Use memory (XFC, resident images, DECram etc.)

* Revisit working set sizes - WSMAX and process guotas
Use RMS global buffers

e Revisit RMS system defaults

 GH regions — map lots of memory with a small number of
page table entries

 INSTALL /RESIDENT and GH region size

o 64bit P2 space and memory reservations

« DECram and HBVS to disc

p== g, e g, U
CONNect
—d j_,_._lqj..:‘.-___!-:-.?:- —

Your Independent HP Busi Technology C ity

Copyright © XDelta Limited, 2017

XD-

xdelta

Making use of storage IO

FC bandwidth is important — what else are you sharing your
storage bandwidth with? Why?

Rotational latency no longer matters, nor does balancing
the 10 load to the spindles

Array controller cache size and volume characteristics
(cluster factor, extend guantity, volume expansion etc.)
HBVS — only shadow what you really need to

HBVS — many shadow sets let you control how rapidly
shadow copying proceeds during recovery

HBVS mini-copy and mini-merge policies

HBVS block count to match array controller cache size

il | | i |
— - 1_,_.14_.:‘.-___,.;-_.‘-:,— -—;-g.ﬂ_%_-;::-::g_ w
Your Independent HP Busi Technology C ity

Copyright © XDelta Limited, 2017 Page 22 of 34 Xde]ta

Making use of network 10

* Network bandwidth and latency matter:
 Use jumbo frames
« Split the traffic across multiple NICs
 What else are you sharing your bandwidth with ?
» Are the switches over-subscribed ?

* Need to avoid retransmits
e Multiple path networks:

* Packets may not arrive in the order in which they were sent
 Beware bus speed limitations

XD-

xdelta

Alignment faults

Unexpected alignment faults on Integrity are expensive and
affect the entire system performance

Use the appropriate compiler switches if they are available
(not all compilers have this feature)

MONITOR ALIGN will show if you have issues

Alignment fault tracing (with SDA)

Look for high MP SYNC (or disguised MP SYNC which may
show up as high INTERRUPT or KERNEL modes)

II,,-S:% e L‘?
- i | . |- A
Your Independent HP Busi Technology C: ity

Copyright © XDelta Limited, 2017 Page 24 of 34 Xde]ta

Contention for resources

 Many processes running in parallel can create contention
for access to data files and shared data structures

* Look for high MP SYNC (or disguised MP SYNC which may
show up as high INTERRUPT or KERNEL modes)

o Fast systems with a high level of parallelism can create
conditions where a lot of things "bunch up” and the overall
effect is to slow the whole system down

* Look closely at the workload and flow of activities through
the system

II,,-S:% e L‘?
-t i | . |- A
Your Independent HP Busi Technology C: ity

Copyright © XDelta Limited, 2017 Page 25 of 34 Xde]ta

Exception handling

Exception handling (LIB$SIGNAL etc.) is a more expensive
mechanism on Integrity than it was on Alpha

Consider alternatives if your code makes extensive use of
exception handling as part of it’s normal flow of control
Increase stack space when using threads

I’";\: . N)
ik | | ot | s 1
R —
HP Busi Technology C ity

Copyright © XDelta Limited, 2017 Page 26 of 34 X de] t a

Performance engineering

Without good data you cannot do good performance work

Avoid guesswork - run T4 all the time
If needed, use T4 “expert mode” and SDA extensions

A faster machine just waits more quickly!

Don’t make it go faster, stop it going slower
The fastest IO is the 1O you don’t do

The fastest code is the code you don’t execute
The idle loop is anything but idle

XD-

xdelta

Porting applications

Setting systems up for good performance is one of the
hidden aspects of porting applications

We need systems to easily handle the normal workload

We need systems to be capable of absorbing unexpected
spikes in workload without problems

We don’'t want to spend our time managing performance
and doing tuning exercises

rl,;_* . ~ ..:;4*_:1:-.: ".':.: = Li-
i | | o | |
AL A A —
HP Busi Technology C ity

Copyright © XDelta Limited, 2017 Page 28 of 34 X de] t a

What worked well ?

* Dedicated CPU for lock manager made a big difference

* Re-ordering the application workflow to reduce periods of
contention made a big difference

» (Going through the process of building the complete system
from scratch flushed out a lot of previously hidden issues

* Involving the application developers, systems people and
support people with them all working together has made a
big difference

II,,-S:% e L‘?

| | | ot | s L

(] _3_ v i | . |- A
Your Independent HP Busi Technology C: ity

Copyright © XDelta Limited, 2017 Page 29 of 34 X de] t a

Testing

e How can we simulate realistic scenarios ?
» Test for scale, not just functionality

« Test to find out what really happens under load and under
failure conditions

 Performance failures are usually transient, so how will you
capture fine-grained enough data to capture a problem ?

II,,-S:% e L‘?
| | | ot | s L
(] _3_ v i | . |- A
Your Independent HP Busi Technology C: ity

Copyright © XDelta Limited, 2017 Page 30 of 34 X de] t a

It’s slow” |

What do they mean ?

Is it responding poorly ?

Is the responsiveness varying too much ?
Are batch jobs running slowly ?

How long are key activities taking ?

Is the expectation unreasonable ?

Is there anything wrong at all ?

Copyright © XDelta Limited, 2017 Page 31 of 34

XD-

xdelta

Performance data and trend analysis

o Without data for historical comparison, how do we know
what’s reasonable ?

« Without data, we’re guessing
« Data needs to be synchronised in time across everything

« Don’'t jump to conclusions — correlation does not imply
causation

* Most problems are combinations of several things

ml,,;_*_:t_: = =y — r——
Your Independent HP Busi Technology C ity

Copyright © XDelta Limited, 2017 Page 32 of 34 X de] t a

Summary

* Most people focus on performance
 Performance and availability are inextricably linked
» (Good holistic design is essential

 Performance can’'t be added later

* Trouble-shooting and resolution requires good data and a
thorough understanding of the whole system

II,,-S:% e L‘?

| | | ot | s L

(] _3_ v i | . |- A
Your Independent HP Busi Technology C: ity

Copyright © XDelta Limited, 2017 Page 33 of 34 X de] t a

Designing for performance with OpenVMS

OpenVMS Bootcamp 2017
Session 234

Colin Butcher CEng FBCS CITP

Technical director, XDelta Limited
www.xdelta.co.uk

_cponect X

Copyright © XDelta Limited, 2017 Page 34 of 34 Xde]ta

	Designing for performance with OpenVMS
	XDelta: Who we are
	Xdelta: The view from HPE
	Agenda
	Abstraction layers
	Using abstraction layers
	The “Hall of mirrors”
	Performance characteristics
	Capacity and scalability
	Current technology trends - parallelism
	Parallelism and scalability
	Writing scalable code
	Code paths and data flows
	IO performance v CPU performance
	Analysis tools and instrumentation
	Compilers
	Limits to software performance
	Software considerations on Integrity
	Java Virtual Machines
	Making use of CPU
	Making use of memory
	Making use of storage IO
	Making use of network IO
	Alignment faults
	Contention for resources
	Exception handling
	Performance engineering
	Porting applications
	What worked well ?
	Testing
	“It’s slow” !�
	Performance data and trend analysis
	Summary
	Designing for performance with OpenVMS

