
Copyright © XDelta Limited, 2017 Page 1 of 34

OpenVMS Bootcamp 2017

Session 234

Colin Butcher CEng FBCS CITP
Technical director, XDelta Limited

www.xdelta.co.uk

Designing for performance with OpenVMS

Copyright © XDelta Limited, 2017 Page 2 of 34

• VSI Professional Services Alliance member
• Independent consulting engineers since 1996:

• UK based with international reach
• Delivering OpenVMS based systems for 30+ years

• Technical leadership for business-critical systems
• Design, planning and implementation
• Mentoring and skills transfer
• Systems engineering background

• Gartner (2009):
• Identified XDelta as one of few companies world-wide capable of

OpenVMS platform migration projects

XDelta: Who we are

Copyright © XDelta Limited, 2017 Page 3 of 34

Xdelta: The view from HPE

Copyright © XDelta Limited, 2017 Page 4 of 34

• Principles of performance
• Designing and implementing scalable software
• Making use of multiple CPUs (cores and hyperthreads)
• Making use of memory
• Making use of the storage IO subsystem
• Making use of the network IO subsystem
• The importance of testing

Agenda

Copyright © XDelta Limited, 2017 Page 5 of 34

“All problems in computing can be solved by introducing
another layer of abstraction.”

“Most problems in computing are caused by too many layers
of complexity.”

We need to strike a balance that is appropriate for the kinds of
systems we’re building.

Abstraction layers

Copyright © XDelta Limited, 2017 Page 6 of 34

• What looks like your dedicated resource is just a slice of a
much bigger thing over which you may have little control:
• What looks like a network isn’t the whole network
• What looks like a disc isn’t a disc
• What looks like memory isn’t all of memory
• What looks like CPUs aren’t all the CPUs

• The operating system allocates and manages machine
resources

• It’s even more complicated in a virtualised environment

Using abstraction layers

Copyright © XDelta Limited, 2017 Page 7 of 34

• You can’t see everything that’s going on

• The view is often distorted

• Hiding things makes it easier to deal with the bits you’re
interested in

• Hiding things makes it much harder to understand what’s
happening, especially with performance related problems

The “Hall of mirrors”

Copyright © XDelta Limited, 2017 Page 8 of 34

• Bandwidth – determines throughput
• It’s not just “speed”, it’s “units of stuff per second”

• Latency – determines response time
• Determines how much data is in transit
• “data in transit” is at risk if there is a failure

• “diff latency” (variation of latency with respect to time) or
“jitter” - determines predictability of response
• Important for establishing timeout values
• Latency fluctuations will cause failures under peak load

Performance characteristics

Copyright © XDelta Limited, 2017 Page 9 of 34

• Contention and saturation – running out of capacity
• What else are we sharing our capacity with ?
• Queuing theory

• Increasing the capacity of the overall system:
• “Scale up” or “vertical scaling” – adding resources to a

machine or buying a bigger machine (CPU count, memory,
I/O adapters, etc.)

• “Scale out” or “horizontal scaling” - adding more machines

Capacity and scalability

Copyright © XDelta Limited, 2017 Page 10 of 34

• Move from low core count, high clock rate processors to
high core count, low clock rate processors

• Implicit assumption is that parallelism can be achieved

• Algorithm design is key

• Don’t leave it all to the compilers

• Serialisation, synchronisation and intercommunication

Current technology trends - parallelism

Copyright © XDelta Limited, 2017 Page 11 of 34

• Understand how the applications could break down into
parallel streams of execution:
• Some will be capable of being split into many small elements with

little interaction between the parallel streams of execution
• Some will require very high interconnectivity between the parallel

streams of execution
• Some will require high-throughput single-stream processing

• Understand scalability – do as much as possible once only,
do little as possible every time

Parallelism and scalability

Copyright © XDelta Limited, 2017 Page 12 of 34

• Check for code making assumptions that the system is a
uniprocessor machine:
• Flags controlling access to an entire global section
• Loops polling for flag status changes (spinlocks)
• Data structures not protected from operations that may happen in

parallel instead of sequentially
• Use the lock manager to serialise and synchronise access

to data structures
• Minimise wait states by having appropriate granularity of

access to data structures
• Take null locks out, then simply convert them as needed

Writing scalable code

Copyright © XDelta Limited, 2017 Page 13 of 34

• How does your code scale up ?

• Separate out static data from dynamic data

• Minimise frequently executed code paths

• How to reduce impact on system and surrounding network
and storage infrastructure ?

Code paths and data flows

Copyright © XDelta Limited, 2017 Page 14 of 34

• Physical I/O operations typically takes a few milliseconds to
complete

• We can execute a lot of CPU clock cycles in a few
milliseconds (1 GHz = 1 nanosecond, thus 1 million clock
cycles per millisecond)!

IO performance v CPU performance

Copyright © XDelta Limited, 2017 Page 15 of 34

• Code analysis tools can help with finding interactions and
heavily executed code paths

• Build instrumentation into your software, then you don’t
change its behaviour by adding temporary code

• Pay attention to state transitions and event timing

• Synchronisation and wait states are expensive

Analysis tools and instrumentation

Copyright © XDelta Limited, 2017 Page 16 of 34

• Generate the Instruction and Data streams for processing
by the system

• Different types of instructions and data are split out into
separate sections (shared data, read-only data, local read-
write data etc.) for use by the linker

• Generate code for a specific machine architecture
• Optimisation re-orders the code to take advantage of

hardware parallelism and processing efficiencies
• Generate debug information
• Linker lays out the image address space and provides

hooks for the image activator

Compilers

Copyright © XDelta Limited, 2017 Page 17 of 34

• Ability to make use of hardware parallelism
• Granularity of data structures
• Synchronisation techniques
• Serialisation techniques
• Scalability techniques
• Compilers
• Application design
• Designing and writing very good code requires very good

programmers

Limits to software performance

Copyright © XDelta Limited, 2017 Page 18 of 34

• Compilers are the key to performance
• Use the documented mechanisms provided by the

operating system – read the release notes and new
features, then use the current mechanisms

• Exception handling (LIB$SIGNAL etc.)
• Data alignment (unexpected alignment faults)
• Floating Point format (IEEE by default)
• Implicit assumptions
• Debugging, ELF & DWARF formats
• Integrity calling standard and register usage

Software considerations on Integrity

Copyright © XDelta Limited, 2017 Page 19 of 34

• Java is not a compiled language running native instructions
–Java run-time environment (Java Virtual Machine)

• The Java run-time environment uses significant amounts of
memory and performs “garbage collection” intermittently to
remove objects no longer in use

• Tuning a system to run Java well can be “interesting”

Java Virtual Machines

Copyright © XDelta Limited, 2017 Page 20 of 34

• Hyperthreading – very workload dependent
• Fastpath IO devices and distributed interrupt handling
• Introduce parallelism into your code flow and batch jobs

where possible
• Dedicated CPU for lock manager (local locking)
• Compression and encryption, eg: SCS compression,

BACKUP compression
• QUANTUM, workload dependent – many SYSGEN

parameter defaults changed in V8.2
• Power management

Making use of CPU

Copyright © XDelta Limited, 2017 Page 21 of 34

• NUMA – “mostly UMA” is a good starting point
• Use memory (XFC, resident images, DECram etc.)
• Revisit working set sizes - WSMAX and process quotas

Use RMS global buffers
• Revisit RMS system defaults
• GH regions – map lots of memory with a small number of

page table entries
• INSTALL /RESIDENT and GH region size
• 64bit P2 space and memory reservations
• DECram and HBVS to disc

Making use of memory

Copyright © XDelta Limited, 2017 Page 22 of 34

• FC bandwidth is important – what else are you sharing your
storage bandwidth with? Why?

• Rotational latency no longer matters, nor does balancing
the IO load to the spindles

• Array controller cache size and volume characteristics
(cluster factor, extend quantity, volume expansion etc.)

• HBVS – only shadow what you really need to
• HBVS – many shadow sets let you control how rapidly

shadow copying proceeds during recovery
• HBVS mini-copy and mini-merge policies
• HBVS block count to match array controller cache size

Making use of storage IO

Copyright © XDelta Limited, 2017 Page 23 of 34

• Network bandwidth and latency matter:
• Use jumbo frames
• Split the traffic across multiple NICs
• What else are you sharing your bandwidth with ?
• Are the switches over-subscribed ?
• Need to avoid retransmits

• Multiple path networks:
• Packets may not arrive in the order in which they were sent

• Beware bus speed limitations

Making use of network IO

Copyright © XDelta Limited, 2017 Page 24 of 34

• Unexpected alignment faults on Integrity are expensive and
affect the entire system performance

• Use the appropriate compiler switches if they are available
(not all compilers have this feature)

• MONITOR ALIGN will show if you have issues
• Alignment fault tracing (with SDA)
• Look for high MP SYNC (or disguised MP SYNC which may

show up as high INTERRUPT or KERNEL modes)

Alignment faults

Copyright © XDelta Limited, 2017 Page 25 of 34

• Many processes running in parallel can create contention
for access to data files and shared data structures

• Look for high MP SYNC (or disguised MP SYNC which may
show up as high INTERRUPT or KERNEL modes)

• Fast systems with a high level of parallelism can create
conditions where a lot of things ”bunch up” and the overall
effect is to slow the whole system down

• Look closely at the workload and flow of activities through
the system

Contention for resources

Copyright © XDelta Limited, 2017 Page 26 of 34

• Exception handling (LIB$SIGNAL etc.) is a more expensive
mechanism on Integrity than it was on Alpha

• Consider alternatives if your code makes extensive use of
exception handling as part of it’s normal flow of control

• Increase stack space when using threads

Exception handling

Copyright © XDelta Limited, 2017 Page 27 of 34

• Without good data you cannot do good performance work

• Avoid guesswork - run T4 all the time
• If needed, use T4 “expert mode” and SDA extensions

• A faster machine just waits more quickly!
• Don’t make it go faster, stop it going slower
• The fastest IO is the IO you don’t do
• The fastest code is the code you don’t execute
• The idle loop is anything but idle

Performance engineering

Copyright © XDelta Limited, 2017 Page 28 of 34

• Setting systems up for good performance is one of the
hidden aspects of porting applications

• We need systems to easily handle the normal workload
• We need systems to be capable of absorbing unexpected

spikes in workload without problems
• We don’t want to spend our time managing performance

and doing tuning exercises

Porting applications

Copyright © XDelta Limited, 2017 Page 29 of 34

• Dedicated CPU for lock manager made a big difference

• Re-ordering the application workflow to reduce periods of
contention made a big difference

• Going through the process of building the complete system
from scratch flushed out a lot of previously hidden issues

• Involving the application developers, systems people and
support people with them all working together has made a
big difference

What worked well ?

Copyright © XDelta Limited, 2017 Page 30 of 34

• How can we simulate realistic scenarios ?

• Test for scale, not just functionality

• Test to find out what really happens under load and under
failure conditions

• Performance failures are usually transient, so how will you
capture fine-grained enough data to capture a problem ?

Testing

Copyright © XDelta Limited, 2017 Page 31 of 34

• What do they mean ?

• Is it responding poorly ?
• Is the responsiveness varying too much ?
• Are batch jobs running slowly ?
• How long are key activities taking ?

• Is the expectation unreasonable ?

• Is there anything wrong at all ?

“It’s slow” !

Copyright © XDelta Limited, 2017 Page 32 of 34

• Without data for historical comparison, how do we know
what’s reasonable ?

• Without data, we’re guessing

• Data needs to be synchronised in time across everything

• Don’t jump to conclusions – correlation does not imply
causation

• Most problems are combinations of several things

Performance data and trend analysis

Copyright © XDelta Limited, 2017 Page 33 of 34

• Most people focus on performance

• Performance and availability are inextricably linked

• Good holistic design is essential

• Performance can’t be added later

• Trouble-shooting and resolution requires good data and a
thorough understanding of the whole system

Summary

Copyright © XDelta Limited, 2017 Page 34 of 34

OpenVMS Bootcamp 2017

Session 234

Colin Butcher CEng FBCS CITP
Technical director, XDelta Limited

www.xdelta.co.uk

Designing for performance with OpenVMS

	Designing for performance with OpenVMS
	XDelta: Who we are
	Xdelta: The view from HPE
	Agenda
	Abstraction layers
	Using abstraction layers
	The “Hall of mirrors”
	Performance characteristics
	Capacity and scalability
	Current technology trends - parallelism
	Parallelism and scalability
	Writing scalable code
	Code paths and data flows
	IO performance v CPU performance
	Analysis tools and instrumentation
	Compilers
	Limits to software performance
	Software considerations on Integrity
	Java Virtual Machines
	Making use of CPU
	Making use of memory
	Making use of storage IO
	Making use of network IO
	Alignment faults
	Contention for resources
	Exception handling
	Performance engineering
	Porting applications
	What worked well ?
	Testing
	“It’s slow” !�
	Performance data and trend analysis
	Summary
	Designing for performance with OpenVMS

