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• VSI Professional Services Alliance member
• Independent consulting engineers since 1996:

• UK based with international reach
• Delivering OpenVMS based systems for 30+ years

• Technical leadership for business-critical systems
• Design, planning and implementation
• Mentoring and skills transfer
• Systems engineering background

• Gartner (2009):
• Identified XDelta as one of few companies world-wide capable of 

OpenVMS platform migration projects

XDelta: Who we are
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Xdelta: The view from HPE
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• Principles of performance
• Designing and implementing scalable software
• Making use of multiple CPUs (cores and hyperthreads)
• Making use of memory
• Making use of the storage IO subsystem
• Making use of the network IO subsystem
• The importance of testing

Agenda
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“All problems in computing can be solved by introducing 
another layer of abstraction.”

“Most problems in computing are caused by too many layers 
of complexity.”

We need to strike a balance that is appropriate for the kinds of 
systems we’re building.

Abstraction layers



Copyright © XDelta Limited, 2017 Page 6 of 34 

• What looks like your dedicated resource is just a slice of a 
much bigger thing over which you may have little control:
• What looks like a network isn’t the whole network
• What looks like a disc isn’t a disc
• What looks like memory isn’t all of memory
• What looks like CPUs aren’t all the CPUs

• The operating system allocates and manages machine 
resources

• It’s even more complicated in a virtualised environment

Using abstraction layers
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• You can’t see everything that’s going on

• The view is often distorted

• Hiding things makes it easier to deal with the bits you’re 
interested in

• Hiding things makes it much harder to understand what’s 
happening, especially with performance related problems

The “Hall of mirrors”
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• Bandwidth – determines throughput
• It’s not just “speed”, it’s “units of stuff per second”

• Latency – determines response time
• Determines how much data is in transit
• “data in transit” is at risk if there is a failure

• “diff latency” (variation of latency with respect to time) or 
“jitter” - determines predictability of response
• Important for establishing timeout values
• Latency fluctuations will cause failures under peak load

Performance characteristics
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• Contention and saturation – running out of capacity
• What else are we sharing our capacity with ?
• Queuing theory

• Increasing the capacity of the overall system:
• “Scale up” or “vertical scaling” – adding resources to a

machine or buying a bigger machine (CPU count, memory,
I/O adapters, etc.)

• “Scale out” or “horizontal scaling” - adding more machines

Capacity and scalability
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• Move from low core count, high clock rate processors to 
high core count, low clock rate processors

• Implicit assumption is that parallelism can be achieved

• Algorithm design is key

• Don’t leave it all to the compilers

• Serialisation, synchronisation and intercommunication

Current technology trends - parallelism
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• Understand how the applications could break down into 
parallel streams of execution:
• Some will be capable of being split into many small elements with 

little interaction between the parallel streams of execution
• Some will require very high interconnectivity between the parallel 

streams of execution
• Some will require high-throughput single-stream processing

• Understand scalability – do as much as possible once only, 
do little as possible every time

Parallelism and scalability
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• Check for code making assumptions that the system is a 
uniprocessor machine:
• Flags controlling access to an entire global section
• Loops polling for flag status changes (spinlocks)
• Data structures not protected from operations that may happen in 

parallel instead of sequentially
• Use the lock manager to serialise and synchronise access 

to data structures
• Minimise wait states by having appropriate granularity of 

access to data structures
• Take null locks out, then simply convert them as needed

Writing scalable code
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• How does your code scale up ?

• Separate out static data from dynamic data

• Minimise frequently executed code paths

• How to reduce impact on system and surrounding network
and storage infrastructure ?

Code paths and data flows
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• Physical I/O operations typically takes a few milliseconds to 
complete

• We can execute a lot of CPU clock cycles in a few 
milliseconds (1 GHz = 1 nanosecond, thus 1 million clock 
cycles per millisecond)!

IO performance v CPU performance
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• Code analysis tools can help with finding interactions and
heavily executed code paths

• Build instrumentation into your software, then you don’t
change its behaviour by adding temporary code

• Pay attention to state transitions and event timing

• Synchronisation and wait states are expensive

Analysis tools and instrumentation
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• Generate the Instruction and Data streams for processing 
by the system

• Different types of instructions and data are split out into 
separate sections (shared data, read-only data, local read-
write data etc.) for use by the linker

• Generate code for a specific machine architecture
• Optimisation re-orders the code to take advantage of 

hardware parallelism and processing efficiencies
• Generate debug information
• Linker lays out the image address space and provides 

hooks for the image activator

Compilers
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• Ability to make use of hardware parallelism
• Granularity of data structures
• Synchronisation techniques
• Serialisation techniques
• Scalability techniques
• Compilers
• Application design
• Designing and writing very good code requires very good 

programmers

Limits to software performance
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• Compilers are the key to performance
• Use the documented mechanisms provided by the

operating system – read the release notes and new
features, then use the current mechanisms

• Exception handling (LIB$SIGNAL etc.)
• Data alignment (unexpected alignment faults)
• Floating Point format (IEEE by default)
• Implicit assumptions
• Debugging, ELF & DWARF formats
• Integrity calling standard and register usage

Software considerations on Integrity
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• Java is not a compiled language running native instructions 
–Java run-time environment (Java Virtual Machine)

• The Java run-time environment uses significant amounts of 
memory and performs “garbage collection” intermittently to 
remove objects no longer in use

• Tuning a system to run Java well can be “interesting”

Java Virtual Machines
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• Hyperthreading – very workload dependent
• Fastpath IO devices and distributed interrupt handling
• Introduce parallelism into your code flow and batch jobs 

where possible
• Dedicated CPU for lock manager (local locking)
• Compression and encryption, eg: SCS compression, 

BACKUP compression
• QUANTUM, workload dependent – many SYSGEN 

parameter defaults changed in V8.2
• Power management

Making use of CPU



Copyright © XDelta Limited, 2017 Page 21 of 34 

• NUMA – “mostly UMA” is a good starting point
• Use memory (XFC, resident images, DECram etc.)
• Revisit working set sizes - WSMAX and process quotas 

Use RMS global buffers 
• Revisit RMS system defaults
• GH regions – map lots of memory with a small number of  

page table entries
• INSTALL /RESIDENT and GH region size
• 64bit P2 space and memory reservations
• DECram and HBVS to disc

Making use of memory
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• FC bandwidth is important – what else are you sharing your 
storage bandwidth with? Why?

• Rotational latency no longer matters, nor does balancing 
the IO load to the spindles

• Array controller cache size and volume characteristics 
(cluster factor, extend quantity, volume expansion etc.)

• HBVS – only shadow what you really need to
• HBVS – many shadow sets let you control how rapidly 

shadow copying proceeds during recovery
• HBVS mini-copy and mini-merge policies
• HBVS block count to match array controller cache size

Making use of storage IO
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• Network bandwidth and latency matter:
• Use jumbo frames
• Split the traffic across multiple NICs
• What else are you sharing your bandwidth with ?
• Are the switches over-subscribed ?
• Need to avoid retransmits

• Multiple path networks:
• Packets may not arrive in the order in which they were sent

• Beware bus speed limitations

Making use of network IO
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• Unexpected alignment faults on Integrity are expensive and 
affect the entire system performance

• Use the appropriate compiler switches if they are available 
(not all compilers have this feature)

• MONITOR ALIGN will show if you have issues
• Alignment fault tracing (with SDA)
• Look for high MP SYNC (or disguised MP SYNC which may 

show up as high INTERRUPT or KERNEL modes)

Alignment faults
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• Many processes running in parallel can create contention 
for access to data files and shared data structures

• Look for high MP SYNC (or disguised MP SYNC which may 
show up as high INTERRUPT or KERNEL modes)

• Fast systems with a high level of parallelism can create 
conditions where a lot of things ”bunch up” and the overall 
effect is to slow the whole system down

• Look closely at the workload and flow of activities through 
the system

Contention for resources
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• Exception handling (LIB$SIGNAL etc.) is a more expensive 
mechanism on Integrity than it was on Alpha

• Consider alternatives if your code makes extensive use of 
exception handling as part of it’s normal flow of control

• Increase stack space when using threads

Exception handling
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• Without good data you cannot do good performance work

• Avoid guesswork - run T4 all the time
• If needed, use T4 “expert mode” and SDA extensions

• A faster machine just waits more quickly!
• Don’t make it go faster, stop it going slower
• The fastest IO is the IO you don’t do
• The fastest code is the code you don’t execute
• The idle loop is anything but idle

Performance engineering
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• Setting systems up for good performance is one of the
hidden aspects of porting applications

• We need systems to easily handle the normal workload
• We need systems to be capable of absorbing unexpected

spikes in workload without problems
• We don’t want to spend our time managing performance

and doing tuning exercises

Porting applications
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• Dedicated CPU for lock manager made a big difference

• Re-ordering the application workflow to reduce periods of 
contention made a big difference

• Going through the process of building the complete system 
from scratch flushed out a lot of previously hidden issues

• Involving the application developers, systems people and 
support people with them all working together has made a 
big difference

What worked well ?
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• How can we simulate realistic scenarios ?

• Test for scale, not just functionality

• Test to find out what really happens under load and under
failure conditions

• Performance failures are usually transient, so how will you
capture fine-grained enough data to capture a problem ?

Testing
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• What do they mean ?

• Is it responding poorly ?
• Is the responsiveness varying too much ?
• Are batch jobs running slowly ?
• How long are key activities taking ?

• Is the expectation unreasonable ?

• Is there anything wrong at all ?

“It’s slow” !
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• Without data for historical comparison, how do we know
what’s reasonable ?

• Without data, we’re guessing

• Data needs to be synchronised in time across everything

• Don’t jump to conclusions – correlation does not imply
causation

• Most problems are combinations of several things

Performance data and trend analysis
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• Most people focus on performance

• Performance and availability are inextricably linked

• Good holistic design is essential

• Performance can’t be added later

• Trouble-shooting and resolution requires good data and a
thorough understanding of the whole system

Summary
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